9 research outputs found

    Peer Learning in the Class or on Facebook? _x000D_ A Correlational Experiment on Learning Outcomes

    Get PDF
    This paper presents two interventions to improve the peer learning practice in an Information System course; namely (1) class-based peer tutoring in small groups and (2) discussions on Facebook group of the course. The article aims at comparing the correlations between the learning outcomes with class-based peer tutoring as well as with Facebook engagement. The findings show that although the learning outcomes are correlated with the both of these two interventions, the students’ engagement on Facebook has a stronger correlation with the learning outcomes. The study also reports the lessons learned in improving students’ engagement on the Facebook group of the course. The results have been discussed in the lens of Theory of Peer Learning and the future avenues of research have been suggested. This study also motivates teaching practitioners in Information Systems to improve peer learning practices by the use of social networking sites in their courses

    Performance Analysis Of Data-Driven Algorithms In Detecting Intrusions On Smart Grid

    Get PDF
    The traditional power grid is no longer a practical solution for power delivery due to several shortcomings, including chronic blackouts, energy storage issues, high cost of assets, and high carbon emissions. Therefore, there is a serious need for better, cheaper, and cleaner power grid technology that addresses the limitations of traditional power grids. A smart grid is a holistic solution to these issues that consists of a variety of operations and energy measures. This technology can deliver energy to end-users through a two-way flow of communication. It is expected to generate reliable, efficient, and clean power by integrating multiple technologies. It promises reliability, improved functionality, and economical means of power transmission and distribution. This technology also decreases greenhouse emissions by transferring clean, affordable, and efficient energy to users. Smart grid provides several benefits, such as increasing grid resilience, self-healing, and improving system performance. Despite these benefits, this network has been the target of a number of cyber-attacks that violate the availability, integrity, confidentiality, and accountability of the network. For instance, in 2021, a cyber-attack targeted a U.S. power system that shut down the power grid, leaving approximately 100,000 people without power. Another threat on U.S. Smart Grids happened in March 2018 which targeted multiple nuclear power plants and water equipment. These instances represent the obvious reasons why a high level of security approaches is needed in Smart Grids to detect and mitigate sophisticated cyber-attacks. For this purpose, the US National Electric Sector Cybersecurity Organization and the Department of Energy have joined their efforts with other federal agencies, including the Cybersecurity for Energy Delivery Systems and the Federal Energy Regulatory Commission, to investigate the security risks of smart grid networks. Their investigation shows that smart grid requires reliable solutions to defend and prevent cyber-attacks and vulnerability issues. This investigation also shows that with the emerging technologies, including 5G and 6G, smart grid may become more vulnerable to multistage cyber-attacks. A number of studies have been done to identify, detect, and investigate the vulnerabilities of smart grid networks. However, the existing techniques have fundamental limitations, such as low detection rates, high rates of false positives, high rates of misdetection, data poisoning, data quality and processing, lack of scalability, and issues regarding handling huge volumes of data. Therefore, these techniques cannot ensure safe, efficient, and dependable communication for smart grid networks. Therefore, the goal of this dissertation is to investigate the efficiency of machine learning in detecting cyber-attacks on smart grids. The proposed methods are based on supervised, unsupervised machine and deep learning, reinforcement learning, and online learning models. These models have to be trained, tested, and validated, using a reliable dataset. In this dissertation, CICDDoS 2019 was used to train, test, and validate the efficiency of the proposed models. The results show that, for supervised machine learning models, the ensemble models outperform other traditional models. Among the deep learning models, densely neural network family provides satisfactory results for detecting and classifying intrusions on smart grid. Among unsupervised models, variational auto-encoder, provides the highest performance compared to the other unsupervised models. In reinforcement learning, the proposed Capsule Q-learning provides higher detection and lower misdetection rates, compared to the other model in literature. In online learning, the Online Sequential Euclidean Distance Routing Capsule Network model provides significantly better results in detecting intrusion attacks on smart grid, compared to the other deep online models

    A Comprehensive Survey on the Cyber-Security of Smart Grids: Cyber-Attacks, Detection, Countermeasure Techniques, and Future Directions

    Full text link
    One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks based on the security requirements, confidentiality, integrity, and availability, without taking into consideration the accountability requirement. In addition, some of these surveys focused on the Transmission Control Protocol/Internet Protocol (TCP/IP) model, which does not differentiate between the application, session, and presentation and the data link and physical layers of the Open System Interconnection (OSI) model. In this survey paper, we provide a classification of attacks based on the OSI model and discuss in more detail the cyber-attacks that can target the different layers of smart grid networks communication. We also propose new classifications for the detection and countermeasure techniques and describe existing techniques under each category. Finally, we discuss challenges and future research directions

    Seniors’ Perspective on Perceived Transfer Effects of Assistive Robots in Elderly Care: Capability Approach Analysis

    Get PDF
    There have been widespread critiques towards the lack of contextual approaches in the adoption theories. This paper argues that independent living plays a significant role in adoption of assistive technologies such as robots among seniors. Therefore, the present article introduces perceived transfer effects as a cognitive process in which elderly realize how assistive robots help them in their functional abilities to empower their capabilities required to live independently. The study conducts qualitative interviews to understand the constructs contributing to the perceived transfer effects of assistive robots from seniors’ perspective. The paper demonstrates the potentials of the capability approach in the context of assistive robots for elderly. The paper opens avenues of research in adoption of similar types of assistive technologies among elderly. The article also informs nursing and aged care professionals about the better adoption of robots as an alternative intervention to improve the everyday life of seniors

    A Comparative Analysis of Supervised and Unsupervised Models for Detecting Attacks on the Intrusion Detection Systems

    No full text
    Intrusion Detection Systems are expected to detect and prevent malicious activities in a network, such as a smart grid. However, they are the main systems targeted by cyber-attacks. A number of approaches have been proposed to classify and detect these attacks, including supervised machine learning. However, these models require large labeled datasets for training and testing. Therefore, this paper compares the performance of supervised and unsupervised learning models in detecting cyber-attacks. The benchmark of CICDDOS 2019 was used to train, test, and validate the models. The supervised models are Gaussian Naïve Bayes, Classification and Regression Decision Tree, Logistic Regression, C-Support Vector Machine, Light Gradient Boosting, and Alex Neural Network. The unsupervised models are Principal Component Analysis, K-means, and Variational Autoencoder. The performance comparison is made in terms of accuracy, probability of detection, probability of misdetection, probability of false alarm, processing time, prediction time, training time per sample, and memory size. The results show that the Alex Neural Network model outperforms the other supervised models, while the Variational Autoencoder model has the best results compared to unsupervised models

    Machine Learning: Models, Challenges, and Research Directions

    No full text
    Machine learning techniques have emerged as a transformative force, revolutionizing various application domains, particularly cybersecurity. The development of optimal machine learning applications requires the integration of multiple processes, such as data pre-processing, model selection, and parameter optimization. While existing surveys have shed light on these techniques, they have mainly focused on specific application domains. A notable gap that exists in current studies is the lack of a comprehensive overview of machine learning architecture and its essential phases in the cybersecurity field. To address this gap, this survey provides a holistic review of current studies in machine learning, covering techniques applicable to any domain. Models are classified into four categories: supervised, semi-supervised, unsupervised, and reinforcement learning. Each of these categories and their models are described. In addition, the survey discusses the current progress related to data pre-processing and hyperparameter tuning techniques. Moreover, this survey identifies and reviews the research gaps and key challenges that the cybersecurity field faces. By analyzing these gaps, we propose some promising research directions for the future. Ultimately, this survey aims to serve as a valuable resource for researchers interested in learning about machine learning, providing them with insights to foster innovation and progress across diverse application domains

    A Comparative Analysis of Supervised and Unsupervised Models for Detecting Attacks on the Intrusion Detection Systems

    No full text
    Intrusion Detection Systems are expected to detect and prevent malicious activities in a network, such as a smart grid. However, they are the main systems targeted by cyber-attacks. A number of approaches have been proposed to classify and detect these attacks, including supervised machine learning. However, these models require large labeled datasets for training and testing. Therefore, this paper compares the performance of supervised and unsupervised learning models in detecting cyber-attacks. The benchmark of CICDDOS 2019 was used to train, test, and validate the models. The supervised models are Gaussian NaĂŻve Bayes, Classification and Regression Decision Tree, Logistic Regression, C-Support Vector Machine, Light Gradient Boosting, and Alex Neural Network. The unsupervised models are Principal Component Analysis, K-means, and Variational Autoencoder. The performance comparison is made in terms of accuracy, probability of detection, probability of misdetection, probability of false alarm, processing time, prediction time, training time per sample, and memory size. The results show that the Alex Neural Network model outperforms the other supervised models, while the Variational Autoencoder model has the best results compared to unsupervised models

    Dynamic Selection Techniques for Detecting GPS Spoofing Attacks on UAVs

    No full text
    Unmanned aerial vehicles are prone to several cyber-attacks, including Global Positioning System spoofing. Several techniques have been proposed for detecting such attacks. However, the recurrence and frequent Global Positioning System spoofing incidents show a need for effective security solutions to protect unmanned aerial vehicles. In this paper, we propose two dynamic selection techniques, Metric Optimized Dynamic selector and Weighted Metric Optimized Dynamic selector, which identify the most effective classifier for the detection of such attacks. We develop a one-stage ensemble feature selection method to identify and discard the correlated and low importance features from the dataset. We implement the proposed techniques using ten machine-learning models and compare their performance in terms of four evaluation metrics: accuracy, probability of detection, probability of false alarm, probability of misdetection, and processing time. The proposed techniques dynamically choose the classifier with the best results for detecting attacks. The results indicate that the proposed dynamic techniques outperform the existing ensemble models with an accuracy of 99.6%, a probability of detection of 98.9%, a probability of false alarm of 1.56%, a probability of misdetection of 1.09%, and a processing time of 1.24 s

    Impact of Dataset and Model Parameters on Machine Learning Performance for the Detection of GPS Spoofing Attacks on Unmanned Aerial Vehicles

    No full text
    GPS spoofing attacks are a severe threat to unmanned aerial vehicles. These attacks manipulate the true state of the unmanned aerial vehicles, potentially misleading the system without raising alarms. Several techniques, including machine learning, have been proposed to detect these attacks. Most of the studies applied machine learning models without identifying the best hyperparameters, using feature selection and importance techniques, and ensuring that the used dataset is unbiased and balanced. However, no current studies have discussed the impact of model parameters and dataset characteristics on the performance of machine learning models; therefore, this paper fills this gap by evaluating the impact of hyperparameters, regularization parameters, dataset size, correlated features, and imbalanced datasets on the performance of six most commonly known machine learning techniques. These models are Classification and Regression Decision Tree, Artificial Neural Network, Random Forest, Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine. Thirteen features extracted from legitimate and simulated GPS attack signals are used to perform this investigation. The evaluation was performed in terms of four metrics: accuracy, probability of misdetection, probability of false alarm, and probability of detection. The results indicate that hyperparameters, regularization parameters, correlated features, dataset size, and imbalanced datasets adversely affect a machine learning model’s performance. The results also show that the Classification and Regression Decision Tree classifier has an accuracy of 99.99%, a probability of detection of 99.98%, a probability of misdetection of 0.2%, and a probability of false alarm of 1.005%, after removing correlated features and using tuned parameters in a balanced dataset. Random Forest can achieve an accuracy of 99.94%, a probability of detection of 99.6%, a probability of misdetection of 0.4%, and a probability of false alarm of 1.01% in similar conditions
    corecore